ON SIMULTANEOUS ADDITIVE EQUATIONS, IV

TREVOR D. WOOLEY*

1. INTRODUCTION

Recent advances in the theory of exponential sums (see, for example, [6], [7],
[8], [12]) have contributed to corresponding progress in our understanding of the
solubility of systems of simultaneous additive equations (see, in particular, [1], [2],
[3], [4]). In a previous memoir [11] we developed a version of Vaughan’s iterative
method (see Vaughan [8]) suitable for the analysis of simultaneous additive equa-
tions of differing degrees, discussing in detail the solubility of simultaneous cubic
and quadratic equations. The mean value estimates derived in [11] are, unfortu-
nately, weaker than might be hoped, owing to the presence of undesirable singular
solutions in certain auxiliary systems of congruences. The methods of [12] provide a
flexible alternative to Vaughan’s iterative method, and, as was apparent even at the
time of their initial development at the opening of the present decade, such ideas
provide a means of avoiding altogether the aforementioned problematic singular
solutions. The systematic development of such an approach having been described
recently in [15], in this paper we apply such methods to investigate the solubility
of pairs of additive equations, one cubic and one quadratic, thereby improving the
main conclusion of [11].

Let s be a positive integer, and let ¢; and d; (1
We consider the solubility, in rational integers z; (1
additive equations

) be rational integers.

<1 <s
< i < s), of the simultaneous

7
F(X):Cll'?‘f—Cng_f’"'_f—csxg:07

1.1

establishing in §5 the following theorem.

Theorem 1. The simultaneous equations (1.1) have a non-trivial solution in ra-

tional integers (which is to say, a solution x € 7Z°\ {0}) if the following conditions
hold:

(a) the polynomial G(x) is indefinite, and has at least 5 variables explicit, and
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(b) the polynomial F(x) has at least 7 variables explicit, and
(c) the system F(x) = G(x) =0 has a non-trivial real solution, and
(d) one has

(i) s > 13, or

(i1) s > 12 and at least 2 of the ¢; are zero, or
(iii) at least 6 of the d; are zero, or

(iv) at least 4 of the ¢; are zero.

The conclusion of Theorem 1 may be compared with [11, Theorem 1], where a
similar result is established with condition (d)(i) replaced with the more stringent
hypothesis that s > 14, and with the alternative condition (d)(ii) absent. We
note that the system (1.1) possesses non-trivial solutions in every p-adic field Q,
provided only that s > 11 (see the main theorem of [10]), and moreover that when
p is a prime number with p = 1 (mod 3), then whenever s < 10 one may exhibit
examples of the shape (1.1) which possess no non-trivial p-adic solutions (see [10,
Lemma 7.2]). It is natural to enquire to what extent the conditions (a), (b) and (c)
of Theorem 1 may be relaxed. For a discussion of such issues we refer the reader
to [11, §5]; in particular, there exist systems (1.1) for which G(x) is indefinite, and
yet the equation F'(x) = G(x) = 0 possesses no non-trivial real solutions.

The proof of Theorem 1 depends for its success on a mean value estimate for
smooth Weyl sums. This we establish in §2 through the use of the efficient differ-
encing process described in [15]. Since this estimate may be of independent interest,
we record it in Theorem 2 below. We first describe some notation. When P and
R are real numbers with 2 < R < P, define A(P, R) to be the set of R-smooth
numbers up to P, that is

A(P,R)={n€Zn|[1,P] : p|n and p prime implies that p < R}.

Also, write e(z) for €2™# and when k is a natural number write T* for the unit

box [0,1]%. We define the smooth Weyl sum f(a) = f(as, as; P, R) by

fla; P,R) = Z e(asz® + apz?), (1.2)
x€A(P,R)

and the corresponding classical Weyl sum F(a) = F(as, ag; P) by

F(a; P) = Z e(azz® + azx?). (1.3)
1<z<P

Theorem 2. Suppose that € is a positive number, and that n is a positive number
sufficiently small in terms of €. Then whenever P is sufficiently large in terms of
€ and n, one has

|F(a; P)* f(a; P, P")%|da < P17/,
TZ
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and here the implicit constant depends at most on € and 7.

We note that [11, Theorem 2] provides a similar estimate, save that the exponent
35/6 is obtained in place of our new exponent 17/3.

We establish Theorem 1 by applying the Hardy-Littlewood method. In broad
outline, we follow the treatment described in our previous work [11] on the topic. In
§2 we provide both the mean value estimate described in Theorem 2, together with
a second new mean value estimate required to establish part (d)(ii) of Theorem 1.
After negotiating some preliminary simplifications in §3, we go on in §4 to apply the
mean value estimates of §2 in order to provide suitable estimates on the minor arcs
of the Hardy-Littlewood dissection. Finally, in §5, we describe a pruning procedure
on the major arcs, and thereby establish an asymptotic formula for the number of
solutions of the system (1.1) inside a suitable large box. The proof of Theorem 1
follows immediately.

Throughout, the letter s will denote a positive integer, and € and n will denote
sufficiently small positive numbers. We take P to be a large positive real number
depending at most on s, € and 7. The implicit constants in Vinogradov’s well-
known notation, < and >, will depend on s, € and 7, unless otherwise indicated.
We adopt the following convention concerning the numbers ¢ and R. Whenever
€ or R appear in a statement, either implicitly or explicitly, we assert that for
each ¢ > 0, there exists a positive number = 7(e, s) such that the statement
holds whenever R < P". Note that the “value” of €, and of 7, may change from
statement to statement, and hence also the dependency of implicit constants on
¢ and 7. We observe that since our methods will involve only a finite number of
statements (depending at most on s and ¢), there is no danger of losing control of
implicit constants through the successive changes implicit in our arguments.

2. MEAN VALUE ESTIMATES FOR EXPONENTIAL SUMS

In this section we establish the mean value estimates essential to our proof of
Theorem 1. We begin by establishing Theorem 2 through the efficient differencing
process described in [15, §5]. We first require some additional notation. Let € be a
parameter with 0 < 6 < 1/3 to be chosen later, and write

M=P H=PM™3 and Q=PM (2.1)
Further, define the polynomial ¥;(z; h;m) (i = 2,3) by
Ui(z;h;m) = (2 + hm3)* — 2°, (2.2)
and write
G(a;m) = Z Z e(asWs(z; h;m) + agWa(z; hym)). (2.3)

1<h<H 1<2<P
Also, define the exponential sum g,,(a; @, R) by

gm(0; Q, R) = Z e(az(mz)® 4+ ag(mz)?). (2.4)
z€A(Q,R)
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Finally, with F'(a; P) and f(o; P, R) as in (1.2) and (1.3), define the mean values

M(P,R)= |G(a;m)*gm(a; Q, R)®|da, (2.5)

M<m<MR’T?

U(P) = N |F(c; P)|%da, (2.6)

and

S(P,R) = | |F(a;P)*f(a; P,R)®|dex.
’]I‘2

Before recalling a special case of [15, Lemma 5.1], it is convenient to record an
estimate for U(P).

Lemma 2.1. One has U(P) < P3*=.

Proof. On considering the underlying diophantine equations, the conclusion of the
lemma is immediate from [11, Theorem 4.1].

Although we will not require estimates sharper than Lemma 2.1 in what follows,
we note that the asymptotic formula

U(P) = 6P + O(P"/3+9)

has recently been established (see [14, Theorem 1]).
Lemma 2.2. Suppose that 0 < 0 < 1/3. Then

S(P,R) < P°M°® (P’MU(Q) + M(P,R)).

Proof. The conclusion of the lemma follows from [15, Lemma 5.1] on taking s = 3,
r =2,k =(3,2), k = 3, and noting that, on considering the underlying diophantine
equations, one has

| (@@ Rltda < v(@.

In order to exploit Lemma 2.2 we employ estimates for M(P, R) contained, in
all essentials, in the proof of [11, Lemma 4.3].

Lemma 2.3. One has S(P, R) < P'7/3+¢,

Proof. We first estimate M(P, R). Observe that by Cauchy’s inequality, it follows
from (2.3) that

|G(a;m)|> < H Z ‘ Z e(azWUs(z; h;m) + asWsa(z; h;m)) 2,

1<h<H 1<z<P
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and hence, on considering the underlying diophantine equations, we deduce from
(2.5) together with (2.2) and (2.4) that

M(P,R) < HV(P,R), (2.7)

where V' (P, R) denotes the number of solutions of the simultaneous diophantine
equations

3
3h(2? — 23) 4+ 3h*m> (2, — 20) = Z(uf’ —v?),
i=1
. (2.8)
2hm(z — 29) = Z(uf —v?),
i=1
with
1<z1,20<P, 1<h<H, M<m<MR
and

Us, V; € A(Q,R) (1 <1< 3) (29)

On considering the underlying diophantine equations, the number of solutions,
Vo, of the system (2.8) counted by V (P, R) for which z; = z5 plainly satisfies

Vo < PMRHU(Q). (2.10)

Suppose then that h,m,z,u,v is a solution of (2.8) counted by V (P, R) with z; #
zo. Writing
=2 —2 and y=z + 20+ hm?>, (2.11)

and eliminating = between the two equations of (2.8), we obtain

(¥ (us;m, y) — ¢ (vi;m, y)) =0, (2.12)

i=1
where 1(z;m,y) is the polynomial defined by
Y(z;m,y) = 2mz2® — 3yz°.

Since, by hypothesis, we have z1 # zo, it follows by applying an elementary divisor
function estimate that given u,v,m and y, there are at most O(P¢) solutions in
h and x = z; — 2z to the system (2.8). Moreover, given h, m, x and y, one may
determine z; and 29 from the equations (2.11). We conclude, therefore, that the
number of solutions, V7, of the system (2.8) counted by V (P, R) for which z1 # 2,
satisfies

<P > > N@im,y), (2.13)

M<m<MR1<y<3PR3
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where N(Q;m,y) denotes the number of solutions of the diophantine equation
(2.12) with u, v satisfying (2.9). But it follows from [5, Theorem 4], as in the
argument following the proof of [11, Lemma 4.3], that

N(Q;m,y) < Q7%
whence, on collecting together (2.7), (2.10) and (2.13), we conclude that
M(P,R) < H(Vy + V1) <« PMRH?*U(Q) + P***MHQ"/?. (2.14)

In order to complete the proof of the lemma, we put § = 1/6, and substitute the
upper bounds of Lemma 2.1 and (2.14) into the conclusion of Lemma 2.2. Thus,
on recalling (2.1) we have

S(P,R) < P*M°® (P2MQ* + PMH?Q® + PMHQ"/?) < P'T/3+<.

Bearing in mind the notational devices described in the final paragraph of the
introduction, the conclusion of Theorem 2 is immediate from Lemma 2.3.

Before describing a second mean value estimate which we require in order to
negotiate case (d)(ii) of Theorem 1, we require some additional notation. Let a, b
and ¢ be non-zero integers, and when (a3, as) € [0,1]2, write
f(a; P,R) = Z e(aasz® + banz?) and  H(ag; P) = Z e(cazy?).

€ A(P,R) 1<y<P

Lemma 2.4. One has

J.

Proof. By considering the underlying diophantine equation, one finds that the in-
tegral on the left hand side of (2.15) is bounded above by the number, W (P, R), of
solutions of the simultaneous diophantine equations

f(a; P, R)®H(ay; P)?| dow < PY0/3F%, (2.15)

4
i=1
) (2.16)
> bad = yf) = e(u® — %),
i=1
with
zi,y; € APR) (1<i<4) and 1<wu,v<P. (2.17)

By Hua’s Lemma (see, for example, [9, Lemma 2.5]), the number of possible choices
for x, y satisfying (2.16) and (2.17) is O(P>*¢). In particular, the number of such
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choices with Z?Zl b(z? — y?) non-zero is O(P57¢), and for any such choice of x, y,
on applying an elementary estimate for the divisor function, it follows from (2.16)
that the number of possible choices for u and v is O(P¢). Consequently the number,
W71, of solutions of (2.16) counted by W (P, R) with u # v satisfies

W, < P°te. (2.18)

On the other hand, on considering the underlying diophantine equations one
finds that the number, Wy, of solutions of (2.16) counted by W (P, R) with u = v
satisfies

Wo < P/ |f(c; P, R)|Bda.
TQ

Consequently, on making a change of variables, applying Schwarz’s inequality and
considering the underlying diophantine equations, we deduce that

. 1/2 . . 1/2
Wo<<P( |F(a: P) da) ( |F(e P)* f(as P, R) |da>
T T

Thus we may conclude from Lemma 2.1 and Theorem 2 that
Wo < P(P¥e)1/2(pl7/3+e)1/2 _ p16/3+e
whence by (2.18) we have
W(P,R) = Wy + W, « P/3+¢,
The lemma now follows immediately.

3. PRELIMINARY SIMPLIFICATIONS

Our application of the Hardy-Littlewood method in the remainder of the paper
will be much simplified by making some preliminary observations. Fortunately,
essentially all of the necessary work is presented in [11, §6]. We consider henceforth
the system (1.1), and start by showing that the conditions of Theorem 1 permit
us to assume that the equations (1.1) have non-singular real solutions, and non-
singular p-adic solutions for each prime p, whence in our application of the circle
method we can expect both the singular series and singular integral to be non-zero.

Lemma 3.1. Suppose that the conditions (a), (b) and (¢) of Theorem 1 hold for
the equations (1.1). Then one of the following holds.

(i) the equations (1.1) have a non-trivial rational solution, or
(ii) the equations (1.1) have a real solution n = (n1,...,ns) with the property
that no n; is zero, and for which, locally, there is an (s — 2)-dimensional

subspace S of positive (s — 2)-volume in the neighbourhood of m on which
F=G=0.
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Proof. The conclusion of the lemma follows from [11, Lemmata 6.1 and 6.2].

Let M, (q) denote the number of solutions of the simultaneous congruences

cimS 4+ -4+ cem3 =0 (mod q),

3
d1m§ 4+t dsmi =0 (mod q),

with 1 <m; <q (1 <i<s).

Lemma 3.2. Suppose that the conditions (a), (b) and (c) of Theorem 1 hold for
the equations (1.1), and that s > 11. Then one of the following holds.

(i) the equations (1.1) have a non-trivial rational solution, or
(ii) for each rational prime p there is a number u = u(p) < oo such that for all
t > u, one has M, (pt) > pt=®)(5=2),

Proof. This is [11, Lemma 6.7].

It is also possible to dispose simply of systems in which there are many vanishing
coefficents.

Lemma 3.3. Suppose that the conditions (a), (b) and (¢) of Theorem 1 hold for
the equations (1.1), and that s > 11. Then the equations (1.1) have a non-trivial
solution in rational integers if either of the following conditions hold.

(i) at least 6 of the d; are zero, or
(ii) at least 4 of the ¢; are zero.

Proof. The conclusions follow in the cases (i) and (ii) respectively from [11, Lem-
mata 6.3 and 6.5].

In view of the conclusions of Lemma 3.3, we may assume henceforth in our proof
of Theorem 1 that s > 13, or else that s > 12 and at least 2 of the ¢; are zero,
and moreover that the number of zero d; is at most 5, and the number of zero ¢;
is at most 3. Thus there are at least s — 8 values of 7 for which both ¢; and d; are
non-zero. Also, if ¢; = d; = 0 for any ¢, then the system (1.1) plainly possesses
a non-trivial rational solution, and so we may suppose that ¢; = d; = 0 for no
1. Suppose that for 1 < i < s precisely m of the d; are zero, precisely n of the
c; are zero, and let h = 10 — m — n. Then we may rearrange the variables with
indices 1,...,s so that d; = 0 for ¢ = 1,...,m, so that ¢; # 0 and d; # 0 for
i=m+1,...,s—n,and sothat ¢; =0 fori=s—n+1,...,s.

By the homogeneity of the system (1.1), together with the conclusions of Lemma
3.1, we may suppose that the equations (1.1) have a non-singular real solution
(1, ...,ms) such that 0 < |n;| < 5 (1 <4 < s). Moreover, since whenever necessary
the ¢; can be replaced by —c; by interchanging x; and —x;, we may suppose without
loss that in fact 7; > 0 (1 < i < s). Furthermore, in view of Lemma 3.2, we may
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suppose that for every rational prime p there is a u = u(p) < oo such that for all
t > u one has M, (p') > plt—w(s=2),

Our initial simplifications complete, we now record some notation to assist in
our later deliberations. Let P be large (in terms of ¢,¢,d,n) and let o; (i = 2,3)
be real variables. Also, let § = 1072, and write

to = max |d;| and t3= max |¢|.
1<i<s 1<i<s

We take 1 to be a positive number sufficiently small in terms of €, in the context
of Theorem 2, and also small enough in the context of [8, Theorem 4.4]. When
1 <1 < s, write

&=1in, G =2m,

Fi(a) = Fi(as,az) = Z €(Cia3x3 + d¢a2x2),
&iP<z<(P

fila) = filag,a0) = > e(ciaza® + diana?).
& P<ax<(; P
z€A(P,R)

When we wish to stress the presence of zero coefficients, we write

gi(a) = fi(a,0) and  Hy(B) = F;(0, ).

Our aim is to estimate the number, R(P), of solutions of the diophantine system
(1.1) in rational integers z; which satisfy

&P <z <GP and x;€ A(P,R) (1<i<10—n),

and
&P <z <GP (11-n<i<s).

We will show that R(P) — oo as P — oo using a variant of the Hardy-Littlewood
method described in [11, §§7-10], thereby completing the proof of Theorem 1. Let

Qi =18:,P"1 (i=2,3), Uf=(Q;1+Q;")x(Q;,14+Q3").

Then by orthogonality, one has

R(P)= | Fla)f(a)H(a)da, (3.1)

10—n s—n s

Fla)= ][] fila), H(@)= ][ Fi@) and Gla)= ][] Fl(a). (32)

=1 1=11—n 1=s—n-+1
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The open square U; is dissected as follows. When (ag,a3,¢9) =1 and 1 < a; <
q < P (i =2,3), we denote a typical major arc by

M(q,a) = M(q, az,a3) = {a €Uy : |qa; —a;| < Q7' (i =2,3)}.

It may be easily verified that the 91(q,a) are disjoint. Let 9T denote the union of
the M(qg,a) with 1 < a; < ¢ < P (i = 2,3) and (az,as,q) = 1, and denote by m
the minor arcs m = U5 \ 9. We will make use of a pruning procedure, and to this

end, when W is a parameter with 2 < W < P2, we define the pruned major arc
N(q,a) by

N(g,a) ={a €U : |go; —a;| <WPT'Q; " (i =2,3)},

and take 91 to be the union of the M(q,a) with 1 < a; < ¢ < W (i = 2,3) and
(a2,as,q) = 1. Plainly, when 9t(g,a) C 9% one has 9i(¢,a) C M(q,a), and thus
2N C M. Finally, we define n = U5 \ N, so that n = (M \ N) Um.

In the remainder of this paper, implicit constants in the notations of Landau and
Vinogradov will depend at most on s, €, n, ¢, d and 7, unless stated otherwise.

4. THE MINOR ARCS

Equipped with the new mean value estimates of §2, our treatment of the minor
arcs is a routine modification of the argument described in [11, §7]. We begin by
recalling some mixed mean value estimates from [11, §7], and also extract upper
bounds from Theorem 2 and Lemma 2.4 in a convenient form.

Lemma 4.1. Suppose that m+1<i<m+h, 1 <j<mands—n+1<k<s.
Then we have

(i) fu* |fi(a)*g; (as)blda < p21/dte.
(ii) fu* | fi ()8 Hy(ao) |dee < P2V/4+e,
(iif) fu* |gj(a3)S Hy(an)*|da < P2Y/4+e
(iv) fu* |fz(0é)|10da < p17/3+5)

v) fu; |fi(c)® Hi(a)?|dee < P1O/3+2,

Proof. Cases (i), (ii) and (iii) of the lemma are simply the corresponding parts of
[11, Lemma 7.2]. For parts (iv) and (v) we merely consider the underlying diophan-
tine equations, and discover that the required estimates are immediate consequences
of Theorem 2 and Lemma 2.4, respectively.

We are now equipped to deal with the contribution of the minor arcs.

Lemma 4.2. We have

/ | F(a)G(a)H(a)|do < P52,
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Proof. By applying the elementary inequality
2129 .. zn| < |z1|™ + |22 + -+ |z0]" (4.1)
to (3.2), we deduce that for some integers I, J, K satisfying
m+1<I<m+h, 1<J<m and s—n+1<K <s,

one has
[F()G(a)| < |f1(e)"gs(as)™ Hi (az)"]. (4.2)

For the sake of concision, write f"g™H" for |fr(c)"g;(cs)™Hy (az)™|. Then by
repeated use of the inequality (4.1), and bearing in mind that m < 5 and n < 3,
we obtain (as in the proof of [11, Lemma 7.3])

frgmH" < f10+ fOHY + frg° + g"H* (4:3)
Moreover, when n > 2 one obtains
FhgmH & fOmgm gt pSmmam 2 o pOpd L 6t 4 3052 4 S 2
so that in view of the decomposition
FIPOH? = (f4g5)5/12 (g8 HA)B/12(f3 2)1/6,

we have
fhgmHn<<f6H4+96H4+f8H2+f4g6. (44)

Thus it follows from (4.2), (4.3), (4.4) and Lemma 4.1 that

/u | F(a)G(a)|doe < PPHAFE, (4.5)

*
2

where A =1/3 when n > 2, and otherwise A = 2/3.
Next we observe that when 11 —n < i < s —n, one has ¢; # 0 and d; # 0, and
hence the argument of [11, Lemma 7.4] shows that

sup [H(q)| < (P¥/4+2)-10,

acm

Thus, by (4.5) one has

/ [F(@)G(a)H(a)|da < sup [H(a)| [ |F(a)G(er)lda < P*°77,

aEm ‘ us

where 7 = —A+(s—10)/4 —e. Consequently, when n > 2 and s > 12, or otherwise
when s > 13, one has 7 > §. This completes the proof of the lemma.



12 TREVOR D. WOOLEY

5. THE MAJOR ARCS

In order to successfully estimate the contribution of the major arcs, we employ
a pruning procedure which, by now, is standard in applications of the Hardy-
Littlewood method involving the use of smooth Weyl sums. We first record some
mean value estimates crucial to our pruning argument.

Lemma 5.1. Suppose that m+1<i<m+h, 1 <j<mands—n+1<k<s.
Then whenever t > 4 one has

(0) fys | fi(@)® Hi(az)"|de < P9,
(ii) fug gj(a3)®Hy(az)!|da < P13,
and also one has
<ﬁi) fu; |fi(a)6gj(043)8‘da < Pg,
(iv) fug |fi(a) Mt da < PO.

Proof. When t > 4, it follows as a simple application of the Hardy-Littlewood
method that whenever I is an index for which d; is non-zero, then one has

1
/O Hy ()| da < P2, (5.1)

Thus the conclusions of parts (i) and (ii) of the lemma follow by applying the
argument of the proof of parts (i) and (ii) of [11, Lemma 9.1], substituting (5.1)
for [11, inequality (9.1)]. Finally, the conclusions of parts (iii) and (iv) are simply
Lemmata 9.1(iii) and 9.4, respectively, of [11].

Lemma 5.2. (a) Suppose that both ¢; and d; are non-zero, and thatt > 9. Then
we have

| 1F@)da < P,
m

and for some o > 0,
/ |Fi(a)|'dae < W7 P'™5,
M\N
(b) Suppose that ¢;, d; and d; are non-zero, and that t > 6 and u > 4. Then
we have

/ |Fi(e) Hj(an)"|doe < P45,
m

and for some o > 0,

/ |Fy(@) Hj (s)"|dee < W P15,
am\on
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Proof. Part (a) of the lemma is [11, Lemma 9.2]. Part (b), meanwhile, follows by
applying the argument of the proof of [11, Lemma 9.3], and substituting the upper
bound (5.1) for [11, inequality (9.1)].

We are now ready to perform our hard pruning procedure.

Lemma 5.3. Suppose that s > 13, or that n > 2 and s > 12. Then

/u | F(e)G(a)H(a)|da < P55,

*
2

and there is a positive number o such that

/ | Fe)G(a)H(e)|dor < W7 P55,

Proof. Write M for either M or M\ M, and let Y =1 if M =9, and Y = W if
M =9\ N. Then by using the inequality (4.1) in the same way as in the proof of
Lemma 4.2, one has

/|.7:(a)g(a)H(a)]da<</ frgmH"F*~ %o (5.2)
M M

for some indices I, J K, L, where here we have abbreviated |f;(a)| to f, |gs(as3)|
to g, |Hx(a2)| to H, and |Fr(a)| to F. Recall that m <5, n <3, h+m+n = 10,
and either n > 2 and s > 12, or else s > 13. We divide into cases according to the
value of n.

Suppose first that n < 1, whence we may assume that s > 13. Then by using
the inequality (4.1) once again, we have

fhgmHn < flO—an + f5—ng5Hn
< [+ [PH+ [°g° + ['g°H. (5.3)

Consequently, on making use of the trivial bound F' < P, we deduce from (5.2)
and (5.3) that

/ |f(a)g(a)H(oz)\doz < PS_13 (Il + IQ + Ig + 1-4), (54)
M

where

T, = / fOF3da, I, = / fPHF3da,
M M

13:/ 3¢5 Fida, 14:/ AP HF3da.
M M
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But an application of Hoélder’s inequality, combined with Lemmata 5.1(iv) and

5.2(a), shows that
5/7 2/7
n< ( / Mde)” / F21/2da)
us M

< (P9)5/7(P11/2y—a)2/7 < PSY—T’ (55)

for some positive number 7. Meanwhile, by applying Holder’s inequality in combi-
nation with Lemmata 5.1(iv) and 5.2(a), (b), we obtain

9/14 3/14 1/7
12<<< / f14da> ( / F7H14/3da> ( / F21/2da)
uz M M

< (P9>9/14(P20/3y—0)3/14(P11/2y—a)1/7 < PSY—T’ (56)

for some positive number 7. Next applying Holder’s inequality together with Lem-
mata 5.1 (iii), (iv) and 5.2(a), we deduce that

Ty < ( i f698da>5/8 </u2 f14da>5/56 </M F21/2da)2/7

< (P9)5/8(P9)5/56<P11/2y—0)2/7 < P8Y_T, (57)

for some positive number 7. Finally, an application of Holder’s inequality together
with Lemmata 5.1(iii), (iv) and 5.2(a), (b) reveals that

Ty < </M2 f698da>5/8 (/MQ f14da)1/56 (/M F7H14/3da>3/14 </M F21/2da)1/7

< (P9)5/8(P9)1/56(P20/3y—o‘)3/14(P11/2y—0')1/7 < PSY_T, (58)

for some positive number 7. Thus, collecting together (5.4)-(5.8), we obtain
/ |F(a)G(a)H(a)|da < P72V 7, (5.9)
M

for some positive number 7.
Next we suppose that s > 12 and 2 < n < 3. Applying the inequality (4.1)
again, we obtain on this occasion

g HY < fPH? A+ fTH? + fP°H? + [P HP. (5.10)

Thus, again making use of the trivial bound F < P, we deduce from (5.2) and
(5.10) that

/ |F(a)G(a)H(a)|da < PS™Y3(Ts + I + Ir + Iy), (5.11)
M
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where

15:/ fPH?*F?da, 16:/ fTH3F?da,
M M

I; = / PP H?*F2da, Tz = / PP H3F2da.
M M
Applying Holder’s inequality in combination with Lemmata 5.1(i), (iv) and 5.2(a)
yields

29 % % 406 %
Ts < ( fSH?da> ( f14da> (/ FT5)
Uz uz M
50 ( 14 0

< (P75 (P%)%05 (P Y )25 < PTY 7, (5.12)

for some positive number 7. Also, combining Holder’s inequality with Lemmata
5.1(i), (iv) and 5.2(a), we deduce that

&0/ 2/3 ” 5/42 28/3 3/14
16<<( fH/da) ( fda) (/F da)
Uz uz M

< <P15/2)2/3(P9)5/42(P13/3y—0)3/14 < P7Y_T, (513)
for some positive number 7. Further, applying Holder’s inequality together with
Lemmata 5.1(i), (ii), (iii) and 5.2(a), we obtain

51

23 51
zr< ([ fogaa)™ ([ rrtaa)™ ([
Uz U U

*
2

27 69
640 80 640 320
g8 H 150 da) (/ Froo da)
M
1117 51 1117 | 27

< (P°)S0 (P50 )30 (Pisy )56 (P& Y )30 < PTY 7, (5.14)

*
2

for some positive number 7. A final application of Holder’s inequality together with
Lemmata 5.1(i), (ii), (iii) and 5.2(a) yields

6 8 1/9 g 216 1/6 g 1216 2T a8 2
Ig<<< fgda) < fH49da> ( gH49da> ( FSda)
us; us u M

*
2
363 363 | 37 23

< (P)Y)(PEHYS (P )R (PFY )% <« PTY T, (5.15)

for some positive number 7. On collecting together (5.11)-(5.15), therefore, we
conclude that the inequality (5.9) holds also in this case.

In order to complete the proof of the lemma, we have only to observe that by
Lemma 4.2 and (5.9) we have

I

()G a)H(a)|da = / F(e)G(a)H(ar)|dax + /m F(e)G(a)H(a)|da

< PS_S,
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and similarly, for some positive number T,

[ Fesem@lda = | F@G@m@a | Fed@e)de

< Ps—5w—7‘ _|_P8—5—5 < PS_SW_T.

The end-game analysis for the pruned major arcs 1 is routine, and is discussed
in detail in [11, §10]. On combining the conclusions of Lemmata 10.1, 10.3 and 10.7
of [11], one finds that whenever s > 12 and W < R, one has

/ Fla)g(a)H(a)da = SCP*° + O (P*° (W'/logP+W™7)),  (5.16)
N

for some 7 > 0, where C is a positive constant!, and

V)

in which we write

Si(q,a,b) = Ze((ciars +dibr?)/q) (1<i<s).

r=1

Moreover, on inserting our assumption that for each prime p one has M, (p') >
plt=w=2) for some u = u(p) < oo, into the conclusions of Lemmata 10.8 and 10.9
of [11], we find that & > 0. Consequently, on combining (5.16) with the conclusion
of Lemma 5.3, and taking W to be a sufficiently small power of log P, we deduce
from (3.1) that R(P) > P*~°, whence Theorem 1 follows immediately.
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